常识资讯
leyucom乐鱼官网,大数据入门的四个必备常识
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说线,数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
这包括功能设备创建或生成的数据leyucom乐鱼官网,,例如智能电表、智能温度控制器、工厂机器和连接互联网的家用电器。这些设备可以配置为与互联网络中的其他节点通信,还可以自动向中央服务器传输数据,这样就可以对数据进行分析。机器和传感器数据是来自新兴的物联网(IoT)所产生的主要例子。来自物联网的数据可以用于构建分析模型,连续监测预测性行为(如当传感器值表示有问题时进行识别),提供规定的指令(如警示技术人员在真正出问题之前检查设备)。
另外,工具必须包含必备的一些功能,包括集成算法和支持数据挖掘技术,包括(但不限于):
根据不同的用户案例和应用,企业用户可能需要支持不同类型的分析功能,使用特定类型的建模(例如回归、聚类、分割、行为建模和决策树)。这些功能已经能够广泛支持高水平、不同形式的分析建模,但是还是有一些厂商投入数十年的精力,调整不同版本的算法,增加更加高级的功能。理解哪些模型与企业面临的问题最相关,根据产品如何最好地满足用户的业务需求进行产品评估,这些都非常重要。
要分析的数据范围涉及很多方面,如结构化和非结构化信息,传统的本地数据库和数据仓库、基于云端的数据源,大数据平台(如Hadoop)上的数据管理等。但是,不同产品对非传统数据湖(在Hadoop内或其他用于提供横向扩展的NoSQL数据管理系统内)上的数据管理提供的支持程度不一。如何选择产品,企业必须考虑获取和处理数据量及数据种类的特定需求。
数据工程师一般被定义成“深刻理解统计学科的明星软件工程师”。如果你正为一个商业问题烦恼,那么你需要一个数据工程师。他们的核心价值在于他们借由清晰数据创建数据管道的能力。充分了解文件系统,分布式计算与数据库是成为一位优秀数据工程师的必要技能。
数据工程师对演算法有相当好的理解。因此,数据工程师理应能运行基本数据模型。商业需求的高端化催生了演算高度复杂化的需求。很多时候,这些需求超过了数据工程师掌握知识范围,这个时候你就需要打电话寻求数据科学家的帮助。
数据科学家倾向于用探索数据的方式来看待周围的世界。把大量散乱的数据变成结构化的可供分析的数据,还要找出丰富的数据源,整合其他可能不完整的数据源,并清理成结果数据集。新的竞争环境中,挑战不断地变化,新数据不断地流入,数据科学家需要帮助决策者穿梭于各种分析,从临时数据分析到持续的数据交互分析。当他们有所发现,便交流他们的发现,建议新的业务方向。他们很有创造力的展示视觉化的信息,也让找到的模式清晰而有说服力。把蕴含在数据中的规律建议给Boss,从而影响产品,流程和决策。
分析历史、预测未来、优化选择,这是大数据工程师在“玩数据”时最重要的三大任务。通过这三个工作方向,他们帮助企业做出更好的商业决策。
大数据工程师一个很重要的工作,就是通过分析数据来找出过去事件的特征。比如,腾讯的数据团队正在搭建一个数据仓库,把公司所有网络平台上数量庞大、不规整的数据信息进行梳理,总结出可供查询的特征,来支持公司各类业务对数据的需求,包括广告投放、游戏开发、社交网络等。
找出过去事件的特征,最大的作用是可以帮助企业更好地认识消费者。通过分析用户以往的行为轨迹,就能够了解这个人,并预测他的行为。
通过引入关键因素,大数据工程师可以预测未来的消费趋势。在阿里妈妈的营销平台上,工程师正试图通过引入气象数据来帮助淘宝卖家做生意。比如今年夏天不热,很可能某些产品就没有去年畅销,除了空调、电扇,背心、游泳衣等都可能会受其影响。那么我们就会建立气象数据和销售数据之间的关系,找到与之相关的品类,提前警示卖家周转库存。
根据不同企业的业务性质,大数据工程师可以通过数据分析来达到不同的目的。以腾讯来说,能反映大数据工程师工作的最简单直接的例子就是选项测试(AB Test),即帮助产品经理在A、B两个备选方案中做出选择。在过去,决策者只能依据经验进行判断,但如今大数据工程师可以通过大范围地实时测试—比如,在社交网络产品的例子中,让一半用户看到A界面leyucom乐鱼官网,,另一半使用B界面,观察统计一段时间内的点击率和转化率,以此帮助市场部做出最终选择。
互联网本身具有数字化和互动性的特征,这种属性特征给数据搜集、整理、研究带来了革命性的突破。以往“原子世界”中数据分析师要花较高的成本(资金、资源和时间)获取支撑研究、分析的数据,数据的丰富性、全面性、连续性和及时性都比互联网时代差很多。
与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。
就行业而言,数据分析师的价值与此类似。就新闻出版行业而言,无论在任何时代,媒体运营者能否准确leyucom乐鱼官网,、详细和及时地了解受众状况和变化趋势,都是媒体成败的关键。
此外,对于新闻出版等内容产业来说,更为关键的是,数据分析师可以发挥内容消费者数据分析的职能,这是支撑新闻出版机构改善客户服务的关键职能。
一般来说,数据科学家大多要求具备编程、计算机科学相关的专业背景。简单来说,就是对处理大数据所必需的hadoop、Mahout等大规模并行处理技术与机器学习相关的技能。
除了数学、统计方面的素养之外,还需要具备使用SPSS、SAS等主流统计分析软件的技能。其中,面向统计分析的开源编程语言及其运行环境“R”最近备受瞩目。R的强项不仅在于其包含了丰富的统计分析库,而且具备将结果进行可视化的高品质图表生成功能,并可以通过简单的命令来运行。此外,它还具备称为CRAN(The Comprehensive R Archive Network)的包扩展机制,通过导入扩展包就可以使用标准状态下所不支持的函数和数据集。
信息的质量很大程度上依赖于其表达方式。对数字罗列所组成的数据中所包含的意义进行分析,开发Web原型,使用外部API将图表、地图、Dashboard等其他服务统一起来,从而使分析结果可视化,这是对于数据科学家来说十分重要的技能之一。
对于大数据工程师的要求都是希望是统计学和数学背景的硕士或博士学历。缺乏理论背景的数据工作者,更容易进入一个技能上的危险区域(Danger Zone)—一堆数字,按照不同的数据模型和算法总能捯饬出一些结果来,但如果你不知道那代表什么,就并不是真正有意义的结果,并且那样的结果还容易误导你。只有具备一定的理论知识,才能理解模型、复用模型甚至创新模型,来解决实际问题。
实际开发能力和大规模的数据处理能力是作为大数据工程师的一些必备要素。因为许多数据的价值来自于挖掘的过程,你必须亲自动手才能发现金子的价值。举例来说,现在人们在社交网络上所产生的许多记录都是非结构化的数据,如何从这些毫无头绪的文字、语音、图像甚至视频中攫取有意义的信息就需要大数据工程师亲自挖掘。即使在某些团队中,大数据工程师的职责以商业分析为主,但也要熟悉计算机处理大数据的方式。
大数据工程师这个角色很重要的一点是,不能脱离市场,因为大数据只有和特定领域的应用结合起来才能产生价值。所以,在某个或多个垂直行业的经历能为应聘者积累对行业的认知,对于之后成为大数据工程师有很大帮助,因此这也是应聘这个岗位时较有说服力的加分项。
2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。
大约90%的数据科学家至少有大学教育经历,甚至到博士以及获得博士学位,当然,他们获得的学位的领域非常广泛。一些招聘者甚至发现人文专业的人们有所需的创造力,他们能教别人一些关键技能。
因此,排除一个数据科学的学位计划(世界各地的著名大学雨后春笋般的出现着),你需要采取什么措施,成为一个数据科学家?乐鱼leyu官方网站,乐鱼leyu官方网站,乐鱼leyu官方网站,